skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ergezer, Mehmet"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Neural Radiance Fields (NeRFs) have been remarkably successful at synthesizing novel views of 3D scenes by optimizing a volumetric scene function. This scene function models how optical rays bring color information from a 3D object to the camera pixels. Radio frequency (RF) or audio signals can also be viewed as a vehicle for delivering information about the environment to a sensor. However, unlike camera pixels, an RF/audio sensor receives a mixture of signals that contain many environmental reflections (also called “multipath”). Is it still possible to infer the environment using such multipath signals? We show that with redesign, NeRFs can be taught to learn from multipath signals, and thereby “see” the environment. As a grounding application, we aim to infer the indoor floorplan of a home from sparse WiFi measurements made at multiple locations inside the home. Although a difficult inverse problem, our implicitly learnt floorplans look promising, and enables forward applications, such as indoor signal prediction and basic ray tracing. 
    more » « less
    Free, publicly-accessible full text available September 2, 2026
  2. Despite an increasing number of successful interventions designed to broaden participation in computing research, there is still significant attrition among historically marginalized groups in the computing research pipeline. This experience report describes a first-of-its-kind Undergraduate Consortium (UC; https://aaai-uc.github.io/about) that addresses this challenge by empowering students with a culmination of their undergraduate research in a conference setting. The UC, conducted at the AAAI Conference on Artificial Intelligence (AAAI), aims to broaden participation in the AI research community by recruiting students, particularly those from historically marginalized groups, supporting them with mentorship, advising, and networking as an accelerator toward graduate school, AI research, and their scientific identity. This paper presents our program design, inspired by a rich set of evidence-based practices, and a preliminary evaluation of the first years that points to the UC achieving many of its desired outcomes. We conclude by discussing insights to improve our program and expand to other computing communities. 
    more » « less